

Draft NTP Technical Report TR 583

Bromodichloroacetic acid

Michael DeVito, Ph.D.

National Institute of Environmental Health Sciences

NTP Technical Reports Peer Review Meeting May 22, 2014

Nomination

CI OH

Nominated by:

- United States Environmental Protection Agency
- American Water Works Association Research Foundation

Nomination based on:

- Widespread exposure to bromodichloroacetic acid through drinking water
- Structurally similar to other haloacetic acids that are carcinogenic in rodents
- Lack of toxicity and carcinogenicity data

Bromodichloroacetic acid: Use and Exposure

- Water disinfection by-product: One of the haloacetic acids
- No known commercial use
- Not regulated by EPA and often not measured in drinking water
- Bromodichloroacetic acid is 1-20% of the total haloacetic acids Weinberg et al. (2002)
- Only ≈2% of water suppliers provide information on bromodichloroacetic acid (Environmental Working Group)
- Highest levels reported are ≈ 17 ug/L (Weinberg et al and Environmental Working Group)

NTP and Water Disinfection By-Products

- A number of classes of water disinfection byproducts have been nominated to NTP
 - Halomethanes
 - Haloacetic acids
 - Oxyhalides

 Focus has been on chlorinated, brominated and mixed chloro/bromo byproducts

Carcinogenicity Studies of Regulated Haloacetic acids

Chemical	Study	Carcinogenicity
Monochloroacetic	NTP (TR-396)	Rats: no evidence
acid H		Mice: no evidence
сі—ċ-соон		
н		
Monobromoacetic	Not tested by the NTP	
acid	No studies in the published literature	
Dichloroacetic	Carter et al. (2003); Pereira (1996);	B6C3F1 mouse - Liver tumors (males and females)
acid	DeAngelo et al. (1991)	
	DeAngelo et al. (1996)	F344 Rat - Liver tumors (males)
	NTP (GMM-11)	
ĊI	FVB Tg.AC hemizygous mice	FVB Tg.AC hemizygous mice: squamous cell
Н—С—СООН СІ		papillomas (males and females) alveolar/bronchiolar
CI		tumors (males and females)
	B6.129- <i>Trp53</i> ^{tm1Brd} (N5)	B6.129- <i>Trp53</i> ^{tm1Brd} (N5) haploinsufficient mice: no
	haploinsufficient mice	evidence
Dibromoacetic	NTP (TR-537)	Rats: malignant mesothelioma (males) and
acid _{Br}		mononuclear cell leukemia (females)
н-с-соон		Mice: hepatocellular adenoma, hepatocellular
I Br		carcinoma, and hepatoblastoma (males and females);
		alveolar/bronchiolar adenoma (males)
Trichloroacetic	Herren-Freund et al. (1987);	B6C3F1 mouse - Liver tumors (males)
acid Cl	DeAngelo and Daniel (1990)) '
сі—с—соон		F344 rat - no evidence (males only)
Ċı	DeAngelo et al. (1997)	, , , , , , , , , , , , , , , , , , , ,

Carcinogenicity Studies of Unregulated Haloacetic acids

Chemical	Study	Carcinogenicity
Bromochloroacetic acid Br H-C-COOH CI	NTP (TR-549)	Rats: malignant mesothelioma (males); large intestine adenomas (males and females); mammary gland (females) Mice: hepatocellular adenoma, carcinoma (males and females); hepatoblastoma (males)
Bromodichloroacetic acid CI Br—C—COOH CI	NTP (TR-583)	Under review
Chlorodibromoacetic acid Br CI—C—COOH Br	Not tested by NTP No studies in the published literature	
Tribromoacetic acid Br Br—C—COOH Br	Not tested by NTP No studies in the published literature	

Experimental Design

- Genotoxicity studies: in vitro and in vivo (mice)
- Toxicity/Carcinogenicity studies
 - F344/N and F344/NTac rats, and B6C3F1/N mice
 - Bromodichloroacetic acid exposure through drinking water:
 - 2- Week Study
 - Rats (F344/N) and Mice (n=5): 0, 62.5, 125, 250, 500 and 1000 mg/L
 - 3-Month Study
 - Rats (F344/N) and mice (n=10): 0, 62.5, 125, 250, 500 and 1000 mg/L
 - 2-Year study
 - Rats (F344/NTac) and mice (n=50): 0, 250, 500 and 1000 mg/L
 - 6 month interim (n=8)
 - 13-month (rats) or 14-month (mice) interim (n=8)

Genetic Toxicity

- Bromodichloroacetic acid was mutagenic in Salmonella typhimurium strains TA97, TA98, and TA100, and in Escherichia coli WP2 uvrA without S9 activation, and in the E. coli strain with S9 activation
- Equivocal results were observed in Salmonella typhimurium strains TA97, TA98, and TA100 with S9 activation

 No increases in micronucleated erythrocytes were observed in mice following a 3-month exposure in drinking water

2-Week Study of Bromodichloroacetic Acid in F344/N Rats and B6C3F1/N mice

- No effects on body or organ weights
- No clinical findings associated with exposure

3-Month Studies of Bromodichloroacetic Acid in F344/N Rats and B6C3F1/N mice

- No chemical-related difference in body weight or body weight gains
- No chemical-related gross or histopathology findings
- Minor changes (< 15%) in liver and kidney weights (rats and mice) at the high exposure concentrations

Dose Selection for 2-Year Studies (Rats and Mice)

- Based on the limited effects of bromodichloroacetic acid in the 3-month studies, the exposure concentrations selected were 0, 250, 500 and 1,000 mg/L
- Average Daily Intake
 - Rats
 - Males: 11, 21, and 43 mg/kg/d
 - Females: 13, 28, and 57 mg/kg/d
 - Mice
 - Males: 23, 52, and 108 mg/kg/d
 - Females: 17, 34, and 68 mg/kg/d

Challenges using the F344/NTac Rat

- Several tumor types with low/rare background incidence in controls were observed in the exposed animals
- Only one other NTP carcinogenicity study used the F344/NTac rats
- In these cases, our past experience with a related strain (F344/N) was taken into consideration
- In cases of low incidence or rare tumors, factors in addition to statistical analysis were considered

Kaplan-Meier Survival Curves for F344/NTac Rats Exposed to Bromodichloroacetic Acid in Drinking Water for 2 Years

10% decrease in body weights in 1,000 mg/L females starting at week 13 10% decrease in body weights in 1,000 mg/L males starting at week 89

Malignant Mesotheliomas in Male F344/NTac Rats

	Vehicle	250 mg/L	500 mg/L	1000 mg/L
	control			
	13-Month	Interim Evalu	ation	
Number Examined	8	8	8	8
Malignant Mesotheliomas (includes bilateral)	0	0	1	5*
	2-	Year Study		
Malignant Mesotheliomas (Multiple organs) ^a	1*	12*	18*	37*

^{*} Significantly different (P≤0.05) from the control group by the Poly-3 test; when in controls indicates significant trend

Neoplastic and Nonneoplastic Mammary Gland Lesions in F344/NTac Rats

	Vehicle control	250 mg/L	500 mg/L	1000 mg/L
		Females		
Hyperplasia ^a	0	4*(1.3)	2* (1.5)	10* (1.2)
Fibroadenoma (includes multiples)	28*	47*	47*	39*
Adenoma	1	2	3	1
Carcinoma	0*	1	3	8*
		Males		
Hyperplasia ^a	6 (1.2)	1* (1.0)	2 (1.0)	1 (1.0)
Fibroadenoma	0	2	3	1

^{*} Significantly different (P≤0.05) from the control group by the Poly-3 test; in control indicates significant trend a Average severity grade of lesions in affected animals: 1=minimal, 2=mild, 3=moderate, 4=marked

TGF-β signaling in mammary gland carcinomas resulting from 2year BDCA exposure in F344/NTac rats

- Differentiate between mammary carcinomas in control and BDCA treated groups
- Laser Capture Microdissection of age-matched normal mammary gland epithelium, and mammary carcinomas from BDCA treated and unexposed rats
- PCR array specific for mammary carcinogenesis
- 8/84 genes were unique to mammary carcinomas from BDCA exposed rats
- Majority of these genes (Mmp9, Mmp2, Id1, Vegfa, and Thbs1)
 were associated with TGF-β signaling with effects on matrix
 remodeling, EMT, tumor invasion and progression

Incidences of Neoplasms of the Skin in Male F344/NTac Rats

	Vehicle control	250 mg/L	500 mg/L	1000 mg/L
Squamous Cell Papilloma	3	1	0	1
Keratoacanthoma (includes multiples)	7	3	10	15*
Basal Cell Adenoma	0	0	4	4
Basal Cell Carcinoma	0	0	0	1
Squamous Cell Carcinoma	0	1	1	0
Sebaceous Gland Adenoma	0	2	2	2
Combined Epithelial skin neoplasms	9*	7	15	21*
Subcutaneous Tissue Fibroma	4*	6	10	15*

^{*} Significantly different (P≤0.05) from the control group by the Poly-3 test; when in control, indicates significant trend

Incidences of Neoplasms of the Brain in Male F344/NTac Rats

	Vehicle control	250 mg/L	500 mg/L	1000 mg/L
	C	Priginal Evaluation	n	
Glioma	0	1	2	2
Oligodendroglioma	0	0	1	1
Glioma or Oligodendroglioma	0	1	3	3
	Original	and Extended Ev	aluation	
Glioma	1	1	2	2
Oligodendroglioma	0	0	2	1
Glioma or Oligodendroglioma	1	1	4	3

Incidences of Gliomas and Oligodendrogliomas of the Brain in Female F344/NTac Rats

	Vehicle control	250 mg/L	500 mg/L	1000 mg/L
Glioma	1	0	2	0
Oligodendroglioma	0	0	1	1
Glioma or Oligodendroglioma	1	0	3	1

Note: No additional tumors were observed in the extended evaluation

Gliomas and Oligodendrogliomas of the Brain in F344/NTac Rats

Males

Some Evidence

- Incidence of gliomas and oligodendrogliomas: 1/50, 1/50, 4/50 and 3/50
- 2013 F344/N historical controls: No studies with more than 1/50 in the controls

Females

Some Evidence

- Incidence of gliomas and oligodendrogliomas: 1/50, 0/50, 3/50 and 1/50
- 2013 F344/N historical controls: No studies with more than 1/50 in the controls

Incidences of Neoplastic and Nonneoplastic Lesions of the Oral Cavity in Male F344/NTac Rats

	Vehicle control	250 mg/L	500 mg/L	1000 mg/L
Epithelial Hyperplasia ^a	0	0	1 (2.0)	2 (2.5)
Squamous Cell Papilloma	0	0	2	2
Squamous Cell Carcinoma	1	0	1	1
Papilloma or Carcinoma	1	0	3	3

^a Average severity grade of lesions in affected animals: 1=minimal, 2=mild, 3=moderate, 4=marked

Squamous Cell Papillomas and Carcinomas of the Oral Cavity

Males

Some Evidence

- 3 neoplasms in the two highest exposure groups and 1 in the concurrent controls
- An association with hyperplasia of the lingual epithelium
- The oral cavity as a portal of entry
- 2013 F344/N historical controls: No studies with more than 1/50 in the controls

Incidences of Adenomas of the Large Intestine in Male F344/NTac Rats

	Vehicle control	250 mg/L	500 mg/L	1000 mg/L
Cecum	0	0	1	0
Colon	0	0	1	1
Rectum	0	0	0	1
Cecum, Colon or Rectum	0	0	2	2

Adenomas of the Large Intestine

Males

Equivocal Evidence

- Incidence of adenomas of large intestine: 0/50, 0/50, 2/50 and 2/50
- 2013 F344/N historical controls: No studies with more than 1/50 in the controls
- Bromochloroacetic acid increased incidence of adenomas of the large intestine

Non-neoplastic lesions in F344/NTac Rats exposed to Bromodichloroacetic Acid

- Liver
 - Males: Eosinophilic focus
 - Females: Eosinophilic focus and hematopoietic cell proliferation
- Spleen
 - Females: Hematopoietic cell proliferation
- Bone Marrow
 - Males: Angiectasis and hyperplasia
 - Females: Angiectasis and hyperplasia

Summary of Carcinogenic Effects of Bromodichloroacetic Acid in Male F344/NTac Rats

Clear evidence of carcinogenic activity:

- Increased incidences of malignant mesothelioma
- Combined incidences of epithelial tumors of the skin (squamous cell papilloma, keratoacanthoma, sebaceous gland adenoma, basal cell adenoma, basal cell carcinoma, or squamous cell carcinoma)
- Related to exposure (some evidence):
 - Increased incidences of glioma or oligodendroglioma (combined) of the brain
 - Increased incidences of squamous cell papilloma or squamous cell carcinoma of the oral cavity (oral mucosa or tongue)
 - Increased incidences of subcutaneous fibromas
- May have been related to exposure (equivocal evidence):
 - Occurrences of adenoma of the large intestine
 - Occurrences fibroadenoma of the mammary gland

Summary of Carcinogenic Effects of Bromodichloracetic Acid in Female F344/NTac Rats

- Clear evidence of carcinogenic activity:
 - Increased incidences of fibroadenoma and carcinoma of the mammary gland
- Related to exposure (some evidence):
 - Increased incidences of glioma or oligodendroglioma (combined) of the brain

Kaplan-Meier Survival Curves for B6C3F1/N Mice Exposed to Bromodichloroacetic Acid in Drinking Water for 2 Years

Effects on Body Weights for B6C3F1/N Mice Exposed to **Bromodichloroacetic Acid in Drinking Water for 2 Years**

Incidence of Neoplastic and Nonneoplastic lesions in the Liver of Male B6C3F1/N Mice

	Vehicle control	250 mg/L	500 mg/L	1000 mg/L
	14-Mont	h Interim Evaluatio	n	
Focus of Cellular Alteration, Atypical ^a	1	2	4	6*
Hepatocellular Adenoma	0	2	1	1
Hepatoblastoma	0	0	0	1
	2	2-Year Study		
Focus of Cellular Alteration, Atypical	0	19*	42*	43*
Hepatocellular Adenoma	39	41	42	40
Hepatocellular Carcinomab	12*	22*	27*	39*
Hepatoblastomac	4*	24*	40*	34*

^{*} Significantly different (P≤0.05) from the control group by the Poly-3 test; when in control, indicates significant trend

^b Historical incidence for drinking water studies: 20/98 (20.4% ± 2.9%), range 18%-22%;

^c Historical incidence for drinking water studies: 1/98 ($1.0\% \pm 1.44\%$), range 0%-2%;

Incidence of Neoplastic and Nonneoplastic Lesions in the Liver of Female B6C3F1/N Mice

	Vehicle control	250 mg/L	500 mg/L	1000 mg/L
	14-Month	n Interim Evaluation	on	
Focus of Cellular Alteration, Atypical	0	2	3	4*
Hepatocellular Adenoma	0	0	1	1
	2	-Year Study		
Focus of Cellular Alteration, Atypical	0	2	6*	16*
Eosinophilic Focus	22	33*	38*	40*
Hepatocellular Adenoma	33*	42*	42*	44*
Hepatocellular Carcinomab	9*	17	22*	26*
Hepatoblastomac	0*	1	4	6*

^{*} Significantly different (P≤0.05) from the control group by the Poly-3 test; when in controls, indicates significant trend

^b Historical incidence for drinking water studies: 38/100 ($38.0\% \pm 19.8\%$), range 24%-52%;

^c Historical incidence for drinking water studies: 2/100 ($2.0\% \pm 2.8\%$), range 0%-4%;

Focus of Cellular Alteration, Atypical (Liver)

These are atypical because of the marked cytomegaly, karyomegaly and cellular atypia but still have features of a focus with a discrete circumscribed, noncompressive cell population that blends into the surrounding hepatic parenchyma

Molecular analysis of paired Hepatoblastoma and adjacent Hepatocellular carcinoma resulting from 2-year BDCA exposure in

HCC

B6C3F1/N mice

 Hepatocellular Carcinoma (HCC), Hepatoblastoma (HB), and Adjacent Normal (AN) tissues were laser capture microdissected from cryosections (for microarray) or FFPE sections (for mutation analysis)

Samples	Hras (Codon 61)		Ctnnb1 (exon 2	
	HCC	НВ	HCC	НВ
Historical controls	260/473* (55%)	NA	1/59# (2%)	NA
BDCA- exposed	4/30 (13%)	2/30 (7%)	3/30 (10%)	7/30 (23%)

^{*} Incidence of Hras mutations in spontaneous HCC of B6C3F1 mice (Maronpot et al., 1995; Sills et al., 1999)

 Microarray analysis of HB indicated dysregulation of Wnt/Ctnnb1 and embryonic development pathways

[#] Incidence of Ctnnb1 mutations in spontaneous HCC of B6C3F1 mice (Hayashi et al., 2003)

Incidence of Neoplastic and Nonneoplastic lesions in the Harderian Gland of Male B6C3F1/N Mice

	Vehicle control	250 mg/L	500 mg/L	1000 mg/L
Epithelium, Hyperplasia ^a	1 (2.0) ^a	1 (1.0)	3 (2.3)	4 (2.0)
Adenoma	6	11	14*	19*
Carcinoma	0	0	0	3
Adenoma or Carcinoma	6*	11	14*	20*

^{*} Significantly different (P≤0.05) from the control group by the Poly-3 test; when in controls, indicates significant trend

^a Average severity grade of lesions in affected animals: 1=minimal, 2=mild, 3=moderate, 4=marked

Nonneoplastic lesions in B6C3F1/N Mice exposed to Bromodichloroacetic Acid

- Males
 - Testes Atrophy at 500 and 1,000 mg/L
 - Epididymis
 - Atrophy all exposure groups
 - Hypospermia high exposure group only
 - Epithelium, Degeneration at 500 and 1,000 mg/L

Summary of Carcinogenic Effects of Bromodichloracetic Acid in B6C3F1/N Mice

- Male B6C3F1/N mice
- Clear evidence of carcinogenic activity:
 - Increased incidences of hepatocellular carcinoma and hepatoblastoma
 - Increased incidences of adenoma or carcinoma (combined) of the Harderian gland

- Female B6C3F1/N mice
- Clear evidence of carcinogenic activity:
 - Increased incidences of hepatocellular adenoma, hepatocellular carcinoma, and hepatoblastoma